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Abstract

There is a recent interest in the relation between optimization algorithms and the
corresponding probabilistic models. Interpreting optimization methods as inference
algorithms in probabilistic models provides insight and guides the design of new
techniques. This work provides a probabilistic interpretation for incremental proxi-
mal methods (IPMs). IPMs are online optimization methods which can be used
for minimizing the sum of a large number of component functions. In this paper,
we first establish the relationship between the IPM for a linear regression problem
and the recursive filtering algorithm for linear-Gaussian models. Interpreting the
IPM as a stochastic filter, we discuss the use of a nonlinear recursive filter for
optimization as an implementation of an IPM-type algorithm when it is not directly
possible to implement the IPM.

1 Introduction

In machine learning and statistics, a common problem of interest is to solve the unconstrained
optimization problem

min
θ∈Rd

f(θ) = min
θ∈Rd

n∑
k=1

fk(θ) (1)

when n is large. This setting is called large-scale regime since the number of observations is very
high to the extent that it rules out the possibility of using classical first or second order optimization
algorithms; gradients may be too expensive to evaluate or even to store. Since classical optimization
algorithms are not applicable, stochastic optimization algorithms become increasingly popular to
tackle the problem given by the Eq. (1). The cornerstone family of algorithms is the well-known
stochastic gradient descent algorithms (SGD) which, using a subset of the data, obtain a noisy and
unbiased estimate of the true gradient and use it for descent at each step [1]. Arguably, the best-known
difficulty is its step-size tuning and there has been an interest in automatic tuning of step sizes, e.g.
see [2, 3, 4].

An alternative to SGD methods is called incremental proximal methods (IPMs) [5]. Instead of taking
a stochastic gradient step at each iteration, these methods exactly minimize a single component (or
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a mini-batch of components) of the cost function by regularizing the solution by the value taken at
the previous iteration. However, although straightforward to obtain for the linear case, in general
incremental proximal iterations are not easy to obtain for nonlinear regression problems. In that case,
every proximal step requires an iterative numerical solution which makes IPMs very unfavorable
compared to the SGD. Here, we will consider the simplest instance of IPMs from [5] which will be
referred as the IPM henceforth.

In this paper, we provide a probabilistic interpretation of the IPM for large-scale regression problems.
The work is similar in spirit to the reinterpretation of optimization algorithms as inference in
probabilistic models of [6, 7]. First, we highlight the relationship between the Kalman filter [8] and
the IPM and show that these two algorithms essentially result in very similar update rules for the
linear case. Then we interpret the extended Kalman filter as a nonlinear version of the IPM.

Related Work. We are not aware of any work in the literature which explicitly highlights the
relationship between the IPM and stochastic filters. However the usage of filters for nonlinear
optimization problems has been largely addressed in the past. One of the most relevant works in
this setting is [9] which provides the case of using extended Kalman filters (EKF) for incremental
least-squares problems. In [9], and similar works such as [10], the EKF is viewed as an incremental
second-order (Gauss-Newton) method. In [11], the author shows, for a static linear-Gaussian model,
that the optimal filter can be seen as a stochastic approximation [1] technique.

There is currently a renascent interest in this connection. In [12], quasi-Newton algorithms are derived
as autoregressive filters. Since certain quasi-Newton methods can be seen as the IPM for Hessian
matrices at the core, this provides the matrix-variate (more general) version of the interpretation we
will provide here for the linear case. In [13], the authors derive the filter for the linear case (they call
it probabilistic least-mean squares filter) and provide an efficient approximation of the covariance
matrix with a single scalar which then can be seen as the (automatically tuned) step-size of a SGD
type method. In [14], the author provides an algorithm called Kalman-based SGD which is equivalent
to the algorithm we obtain here in our linear filtering derivation.

While recent work has been mostly focused on the linear case, in this paper, we would like to discuss
what nonlinear filtering can provide for solving an online optimization problem and vice versa.

2 Incremental Proximal Methods

Incremental proximal methods [5] aim to solve problems of the form (1) by using only a single
function at each iteration. In short, the IPM provides solutions to the sequence of problems,

θk = proxλ,fk(θk−1) = argmin
θ∈Rd

fk(θ) + λ‖θ − θk−1‖22 (2)

where prox denotes the proximal map. Note that, here fk is actually fik where ik is sampled from
the index set [n] = {1, . . . , n} uniformly random (as in the case of SGD), but we will slightly abuse
the notation and use fk for simplicity. The IPM generates a sequence (θk)k≥0 of estimates where
each element is a solution of a subproblem. When (2) is analytically solvable, it is argued to be more
stable than the SGD and preferable, see [5] for a discussion on convergence.

2.1 IPM for the Linear-Quadratic Cost as a Recursive Filter

Given an output vector Y ∈ Rn and inputs X ∈ Rd×n, the linear regression problem is to fit
a vector θ ∈ Rd which satisfies Y ≈ θ>X . The problem can be formulated as minimizing
f(θ) = ‖Y − θ>X‖22. Although it can be solved analytically, it is unfeasible to do so if n is large.

Consider f(θ) =
∑n
k=1 fk(θ) where fk(θ) = ‖yk − θ>xk‖22. For the linear regression case where

fk(θ) = ‖yk − θ>xk‖22, the incremental proximal iteration will result in the update rule

θk = θk−1 +
xk(yk − θ>k−1xk)

λ+ x>k xk
. (3)

The question we want to shed light here is the following: can we obtain (3) as a recursive posterior-
mean update in a (Gaussian) probabilistic model? The answer to the question is yes, a similar update
rule can be derived using a probabilistic model. Let us consider the following probabilistic model,

p(θ) = N (θ; θ0, V0), p(yk|θ) = N (yk; θ
>xk, λ).
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where N (x;µ, S) denotes the Gaussian distribution defined on x with mean µ and covariance S.
Given the data sequence y1:k, the posterior distribution p(θ|y1:k) is Gaussian [8]. We denote it as
p(θ|y1:k) = N (θ; θk, Vk). The sufficient statistics θk and Vk can be computed recursively by,

θk = θk−1 +
Vk−1xk(yk − θ>k−1xk)

λ+ x>k Vk−1xk
, (4)

Vk = Vk−1 −
Vk−1xkx

>
k Vk−1

λ+ x>k Vk−1xk
. (5)

The relationship between the Eqs. (3) and (4) can be easily seen. At this point, it is also instructive to
look at the SGD update for minimizing the linear-quadratic cost which is given by,

θk = θk−1 + γkxk(yk − θ>k−1xk), (6)

where γk is the step-size of the algorithm. If we compare (3), (4) and (6), by setting a step size
to certain quantities involving xk and λ, SGD can also be interpreted as a suboptimal filter. An
appealing discussion of the connection between stochastic approximation algorithms and optimal
filters can be found in [11]. The paper shows (for the linear case) how updates in a form similar to (4)
can be seen as valid stochastic approximation methods.

2.2 Extended Recursive Filter as an IPM for Nonlinear Case

Let us consider a nonlinear regression problem where we have yk ≈ g(xk, θ) where g(·, θ) is
a nonlinear function of θ. Since xk’s are given (inputs in the machine learning setting), we put
gk(θ) := g(xk, θ) and note that gk(θ) : Rd → R. The problem of interest is then

min
θ∈Rd

f(θ) = min
θ∈Rd

n∑
k=1

‖yk − gk(θ)‖22. (7)

The incremental proximal iteration for this problem requires to solve

θk = argmin
θ∈Rd

‖yk − gk(θ)‖22 + λ‖θ − θk−1‖22

at each iteration. In [5], the author assumes this problem is solvable but this is rarely the case.
Because of this reason, problems like (7) are usually solved by SGD-type algorithms. To arrive at the
extended filtering solution, similarly to the last section, we formulate the probabilistic model,

p(θ) = N (θ; θ0, V0), p(yk|θ) = N (yk; gk(θ), λ).

Now since the model is nonlinear, the EKF is a natural candidate to use [8]. Let us denote hk =
∇θgk(θk−1). In this case, extended filtering recursions are given as

θk = θk−1 +
Vk−1hk(yk − gk(θk−1))

λ+ h>k Vk−1hk
(8)

and

Vk = Vk−1 −
Vk−1hkh

>
k Vk−1

λ+ h>k Vk−1hk
.

Note that this is different from a naïve linearization of gk (i.e. using hk as the observation model) and
then deriving the IPM. In that case, the term (yk − gk(θk−1)) would be replaced by (yk − h>k θk−1)
which does not result in numerically stable updates.

It is again instructive here to look at the SGD update for nonlinear-quadratic cost functions

θk = θk−1 + γkhk(yk − gk(θk−1)),

to compare it with (8). From this perspective, SGD can be seen in a similar spirit to extended recursive
filters with a hand-tuned covariance.
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Figure 1: Results on fitting a sigmoid function using EKF, SGD, and approximate nonlinear IPM. On
the left, λtr = 0.005 and λ = 1. On the right, data is much more noisy since λtr = 0.05 and λ = λtr.
The high noise level, however rightly specified, causes instability for the IPM updates. It is apparent
from the experiments that one can safely overestimate the noise level λ and big values of λ is always
safer for the IPM. However, the EKF does not suffer from the problem.

3 A Numerical Result and Discussion

As a numerical demonstration, we have compared three algorithms in Fig. 1 on a simple problem of
fitting a sigmoid function. The algorithm called approximate nonlinear IPM consists of applying a
standard iterative solver for each subiteration since the nonlinear case is not solvable in general. The
model used in the experiment is the following model,

yk = gk(θ) + εk =
1

1 + exp(α+ β>xk)
+ εk

where εk ∼ N (0, λtr), and xk ∈ R3 denotes the inputs, and the parameter θ = (α, β) where θ ∈ R4.
We set the true value of the parameter λ, denoted with λtr, to certain values while generating the data
and used algorithms with different values of λ (see Fig. 1 for the comments).

We think that the following advantages of a filtering interpretation for online optimization could be
beneficial. First, we can estimate λ with standard techniques of maximum likelihood or Bayesian
estimation (e.g. by putting an inverse Gamma prior). Second, the EKF would provide error bars for
each estimate where neither the IPM nor SGD is able to provide it. The computational burden of
updating d×dmatrix Vk at each iteration can be eased using the idea from [13], namely approximating
it with a scalar and keep updating only a scalar as a measure of uncertainty.

It should be clear that, in an algorithmic sense, we have not proposed a totally new procedure. What
we discussed here is an interpretation of the IPM as a filter, and the EKF as the nonlinear extension of
the IPM for general regression problems. Although the use of EKFs for nonlinear regression problems
is well-known, the natural choice is often SGD. This is understandable since it is not obvious how the
extended filters would behave in a highly nonlinear problem such as training neural networks.

Nevertheless, we think that the filtering interpretation motivated by the IPM can provide guidelines
on how to design numerical schemes for more general problems. In machine learning and statistics,
problems of the form (1) are popular with nonquadratic and nonlinear cost functions fk. For many
cost functions, a corresponding probabilistic interpretation is possible: for example, the connections
between Bregman divergences and exponential families [15] or between Tweedie densities and Beta
divergences [16] are well-known. Applying the idea to general cost functions would imply that
the solution can be computed recursively with a nonlinear filtering technique. In this direction,
there are some initial works in the literature, see e.g. [17], [18]. From the reverse perspective, it
would be intriguing to think what other incremental proximal methods proposed in [5], such as
incremental subgradient methods, can provide for advanced nonlinear filtering algorithms. Reframing
online optimization methods as filters can also be beneficial developing new filtering algorithms and
understanding the behaviour of filtering algorithms better.
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