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Abstract

In this technical note, we leverage theory from stochastic approximations to char-
acterize the asymptotic variance of a general class of stochastic optimization
procedures. We show that one approach to tuning parameters of such procedures
is to minimize the asymptotic variance, and we illustrate such tuning in simula-
tions. Using this result, we also obtain new statistical insights on popular methods
employing mini-batches, adaptive gradients, and variance reduction.

1 Introduction

Many stochastic optimization procedures are of the following form:

θn = θn−1 −
1

n
S(θn−1), (1)

where S(θ) is a random variable that depends on parameter θ such that (i) E(S(θ?)) = 0; (ii)
Var(S(θ)) is bounded; (iii) S is convex such that S(θ)′(θ − θ?) is positive in expectation. The
convergence in probability of θn to θ? follows from the seminal result of Robbins & Monro [7].
Several stochastic optimization procedures are special cases of Eq. (1), including stochastic gradient
descent, AdaGrad [2], and stochastic variance reduction [4].

There are several ways to select S(θ) and still converge to θ?. For example, for any two valid
selections S1 and S2, their weighted average is also valid. Thus, one approach is to parameterize
S and then tune the parameters to optimize some objective. Here, we choose this objective to be
the limit of nVar(θn), the asymptotic variance of θn as an estimator of θ?. Better procedures have
smaller asymptotic variances, so reducing such variance is a principled way to optimize them. In
Section 2 we derive the main theoretical result, and subsequently use it to gain insights on popular
stochastic optimization procedures.

2 Theory

Theorem 1 (Fabian [3]). Let E(S(θ)) = s(θ). Let Js(θ) denote the Jacobian of s at θ and
suppose that Js(θ) − I/2 is positive-definite everywhere, where I is the identity matrix. Also let
Vs(θ) = Var(S(θ)) denote the variance of S(θ), and define the limit Σ = limn→∞ nVar(θn). Then,

(Js(θ?)− I/2)Σ + Σ(Js(θ?)− I/2) = Vs(θ?). (2)

Proof. Under the theorem definitions, we can write procedure (1) as follows:

θn = θn−1 −
1

n
s(θn−1)− 1

n
Wn,
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where Wn is the stochastic component of S(θn) with E(Wn) = 0 and Var(Wn) = Vs(θ). Near the
solution θ?, we can write s(θ) = Js(θ?)(θ − θ?) + o(||θ − θ?||) so that the procedure becomes

θn − θ? = (I − 1

n
Js(θ?))(θn−1 − θ?)−

1

n
(Wn + o(||θn−1 − θ?||)).

By Fabian’s theorem [3], as n → ∞,
√
n(θn − θ?) is asymptotically normal with variance Σ as

defined in Eq. (2).

Corollary 1. In Theorem 1, suppose that Js(θ) and Vs(θ) commute. Then,

Σ = (2Js(θ?)− I)
−1
Vs(θ?). (3)

Remarks. Eq. (3) determines the statistical efficiency of the stochastic procedure in Eq. (1), since it
can be shown that the MSE of stochastic procedures can be decomposed into a O(1/n) variance term
and a O(1/n2) bias term, and so the variance term is more important in the limit. Moreover, Eq. (3)
illustrates that the asymptotic variance depends on the Jacobian of s(θ) = E(S(θ)). Intuitively,
the Jacobian determines the covariance between θn−1 and S(θn−1) since Cov(S(θn−1), θn−1) ≈
Cov(Js(θ?)(θn−1 − θ?), θn−1) = Js(θ?)Var(θn−1). This covariance measures roughly how much
information is “wasted” due to the curvature of s(θ), and so more efficient procedures will have
smaller curvature – ideally, no curvature at all as in normal linear models.

3 Stochastic gradient descent

Suppose we have data {(Xi, Yi)}Ni=1 and we wish to find θ? ∈ Rp to minimize a differentiable and
convex loss function, typically the negative of log-likelihood of Y given X and θ:

θ? = arg min
θ
− 1

N

N∑
i=1

log f(Yi;Xi, θ)⇒ −
1

N

N∑
i=1

∇ log f(Yi;Xi, θ?) = 0.

One popular approach is to find θ? using stochastic gradient descent (SGD):

θn = θn−1 −
γ

n
(−∇ log f(Yik ;Xik , θn−1)) , (4)

where ik is a random sample from {1, 2, . . . , N}. To write Eq. (4) in the form of Eq. (1), we define
Z to be a one-hot binary vector of length N , selected uniformly at random. We also let Gθ denote
the p×N matrix where the jth column is −∇ log f(Yj ;Xj , θ). Note that the only random variable
here is Z, whereas Gθ is a deterministic function of θ, conditional on the data. Then, SGD in Eq. (4)
is equivalent to the procedure

θn = θn−1 −
γ

n
Gθn−1

Z, (5)

and thus S(θ) = γGθZ in the notation of Eq. (1). By definition, E(Z) = (1/N)1, where 1 is the
appropriately-sized vector of ones, and Var(Z) = (1/N)I − (1/N2)11ᵀ. Hence,

s(θ) = E(S(θ)) = γE(GθZ) = γGθE(Z) = (γ/N)Gθ1 = (−γ/N)

N∑
i=1

∇ log f(Yi;Xi, θ),

from which it follows that s(θ?) = (γ/N)Gθ?1 = 0, as desired. Therefore, the Jacobian is

Js(θ?; γ) = (−γ/N)

N∑
i=1

∇2 log f(Yi;Xi, θ?). (6)

Similarly the variance is derived as follows
Vs(θ?) = Var(S(θ?)) = γ2Var(Gθ?Z) = γ2Gθ?Var(Z)Gᵀ

θ?
= (γ2/N)Gθ?G

ᵀ
θ?
. (7)

In linear models where the loss depends on θ through a linear combination with featuresX , i.e. where
f(Y ;X, θ) ≡ f(Y ;X ′θ), we can show that Js(θ) and Vs(θ) commute and thus using Corollary 1
we obtain:

nVar(θn)→ (1/N)γ2(2Js(θ?; γ)− I)−1Gθ?G
ᵀ
θ?
. (8)

We can use this formula for the asymptotic variance of SGD to tune the learning rate parameter γ
in a principled way. We describe this tuning next, and subsequently describe tuning SGD with a
multi-dimensional learning rate.
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(a) Error for λ× γ∗. (b) Error for scalar γ∗ and matrix Γ∗.

Figure 1: (a): Selecting γ∗ according to Eq. (9) yields smallest estimation error compared to other
values of γ; (b): Selecting the multi-dimensional learning rate Γ∗ according to Eq. (12) yields better
performance than the best scalar learning rate γ∗ of Eq. (9).

3.1 Choosing γ

One approach for tuning γ is to minimize the trace of the asymptotic variance matrix in Eq. (8):

γ∗ = arg min
γ

{
trace

(
γ2(2Js(θ?; γ)− I)−1Gθ?G

ᵀ
θ?

)}
. (9)

We illustrate this approach in the following experiment. We generate a synthetic dataset
{(Xi, Yi)}2000i=1 from a logistic regression model. We sample and fix our covariates Xi ∼ N10(0, I)
and set θ? ∈ R10 so that the k-th coordinate is θk? = 5e−k. We generate responses Yi ∼ Bern(pi)
where pi = 1/(1 + exp(−θ′?Xi)). We then solve Eq. (9) exactly for γ∗.

With this fixed dataset and γ∗, we perform SGD with 20e3 iterations to estimate θ?. We perform
SGD 500 separate times on the same dataset to obtain 500 different parameter estimates – variability
across trials is introduced by the order in which we sample our data. Finally, we compute the mean
squared error between θSGD

n and θ? across all 500 runs. For comparison, we also perform SGD with
γ = λγ∗ for varying levels of λ. Figure (1a) shows that λ = 1 obtains the best parameter estimation
error, consistent with the theory. We observed similar results across different datasets.

3.2 Multi-dimensional learning rate

We now generalize the SGD procedure in Eq. (5) to use a p × p positive definite matrix Γ as the
multi-dimensional learning rate:

θn = θn−1 −
1

n
ΓGθn−1Z. (10)

If we can set Γ to commute with Js(θ?) then we can show for this SGD procedure that

nVar(θn)→ (1/N)(2ΓJs(θ?)− I)−1ΓGθ?G
ᵀ
θ?

Γᵀ (11)

This expression illustrates that we now have more freedom to reduce the asymptotic variance of
SGD. Similar to the method above, we find Γ by minimizing the asymptotic variance in Eq. (11).
However, to ensure that Γ and Js(θ?) commute, we first obtain the eigenvalue decomposition of
Js(θ?) = QΛQT , and then solve the following optimization problem:

D∗ = arg min
D

{
trace

(
(2(QDQT )Js(θ?)− I)−1(QDQT )Gθ?G

ᵀ
θ?

(QDQT )ᵀ
)}

(12)

where D is a diagonal matrix. Finally, we set Γ∗ = QD∗QT . For these experiments, we degrade the
conditioning of the design matrix X to better illustrate the improvement over the approach in Section
(3.1). We show the improvement of the multi-dimensional Γ in Figure (1b).
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4 Insights on other methods

4.1 Mini-batch SGD

A generalization of SGD in Eq. (1) is to use the average of m gradients selected at random.
In our notation, S(θ) = −(γ/m)γGθZ, where Z is now a binary vector with exactly m
random components equal to 1. The expected value of S is the same as in classical SGD
since E(S(θ)) = −(γ/m)GθE(Z) = (−γ/N)Gθ1. The variance, however, is different since
Var(S(θ)) = (γ2/m2)GθVar(Z)Gᵀ

θ , where Var(Z) = (1− 1
N )a(1− a)I − 1

N−1a(1− a)11ᵀ, and
a = m/N is the mini-batch proportional to the total sample size. When θ = θ?, and assuming
1− a ≈ 1, we obtain Vs(θ?) = Var(S(θ?)) = (γ2/mN)Gθ?G

ᵀ
θ?
.

Mini-batch SGD therefore achieves anm-fold improvement in statistical efficiency relative to classical
SGD. However, the computational burden increases m-fold because at every iteration we calculate
and add m gradients together.

4.2 Adaptive methods

Equations (9) and (12) illustrate that for optimal selection of learning rates we need to know the true
parameter values θ?. For example, we can show that the optimal selection of Γ∗ in Eq. (12) is given
by Γ∗ = F (θ?)

−1, where F (θ) = −E(∇2 log f(Y ;X, θ) is the so-called Fisher information matrix.
Under standard statistical theory we can also show that Js(θ?)→ F (θ?) and Vs(θ?)→ F (θ?), as
N →∞. Thus by Eq. (11) we have

nVar(θn)→ (2F (θ?)
−1Js(θ?)− I)−1F (θ?)

−1F (θ?)F (θ?)
−ᵀ = F (θ?)

−1.

The quantity F (θ?)
−1 is the so-called Cramer-Rao bound, and it is a fundamental estimation bound:

any unbiased estimator of θ? cannot achieve variance that is smaller than F (θ?)
−1/n in the limit as

n, the number of iid samples, increases.

It follows that if we know F (θ?)
−1, we can use SGD in Eq. (10) with Γ = F (θ?)

−1 and achieve
optimal estimation efficiency. This is why most adaptive methods in fact aim to approximate F (θ?)
along the main procedure [6, 1], e.g., using F (θn). AdaGrad [2] is an interesting case where F (θ?)
is diagonally approximated but the learning rate is of order, say, 1/

√
n. This leads to an inefficient

estimator but the estimator is robust to misspecifications of the learning rate parameters, unlike SGD
which is sensitive to such misspecifications [8].

4.3 Variance reduction methods

In variance reduction [5, 4] the stochastic procedure in Eq. (1) is typically modified as follows:

θn = θn−1 −
γ

n

[
−∇ log f(Yik ;Xik , θn−1) +∇ log f(Yik ;Xik , θ̃) + µ̃

]
, (13)

where θ̃ is some moving average of θn and µ̃ = − 1
N

∑N
i=1∇ log f(Yik ;Xik , θ̃). In our notation, the

above procedure is equivalent to θn = θn−1 − 1
nS(θn−1), where

S(θ) = γ[GθZ −Gθ̃Z + (1/N)Gθ̃1].

Note that s(θ) = E(S(θ)) = γ[GθE(Z)−Gθ̃E(Z)+(1/N)Gθ̃1] = (γ/N)Gθ1, which is the same
regression function as in SGD of Eq. (4), and thus the Jacobian Js(θ) here is the same as in classical
SGD. However, the variance Vs(θ) of S(θ) is different:

Vs(θ) = γ2Var((Gθ−Gθ̃)Z) = γ2(Gθ−Gθ̃)Var(Z)(Gθ−Gθ̃)
ᵀ =

γ2

N
(Gθ−Gθ̃)(Gθ−Gθ̃)

ᵀ+O(1/N2).

Assuming Lipschitz gradients we obtain Var(S(θ)) = O(||θ − θ̃||2) and since ||θn − θ̃|| → 0, we
conclude that nVar(θn)→ 0. Variance reduction methods therefore do better than the O(1/n) rate
of classical methods such as SGD. Our analysis illustrates that variance reduction methods essentially
construct a statistic S(θ) that has the same expectation as classical SGD but with vanishing variance.
This construction is possible because we allow ourselves to periodically calculate the entire gradient
(parameter µ̃ in Eq. (13)), which inherits the convergence rate properties of deterministic methods.
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