
Stochastic Optimization and Machine Learning:
Cross-Validation for Cross-Entropy Method

Anirban Chaudhuri
Massachusetts Institute of Technology

Cambridge, MA 02155, USA
anirbanc@mit.edu

David Wolpert
Santa Fe Institute

Santa Fe, NM 87501, USA
http://davidwolpert.weebly.com

Brendan Tracey
Santa Fe Institute

Santa Fe, NM 87501, USA
btracey@santafe.edu

Abstract
We explore using machine learning techniques to adaptively learn the optimal
hyperparameters of a stochastic optimizer as it runs. Specifically, we investigate
using multiple importance sampling to weight previously gathered samples of an
objective function and combining with cross-validation to update the exploration
/ exploitation hyperparameter. We employ this on the Cross-Entropy method as
it is finding the optimum of a function. Computer experiments show that this
improves performance of the Cross-Entropy method beyond using any fixed value
for that hyperparameter. The techniques outlined in this work are applicable to any
optimization algorithms which operate on probability distributions.

1 Introduction
Suppose we want to find the minimum of an an objective function G(x ∈ X ) where X ⊆ Rd.
Stochastic optimizers iteratively update a sampling distribution qθ(x) at each stage t, and sample the
time-t distribution to get the next set of x at which to sample G(.). The goal is to update this qθ(x) as
the optimizer runs, based on the dataset of samples seen so far, to quickly concentrate on x that have
low values of G(x). Examples of stochastic optimizers include Genetic Algorithms [7], Simulated
Annealing [3], estimation of distribution algorithms (EDA) [6] and probability collectives [14]. This
work is applicable to all estimation of distribution [2, 5, 6, 8, 9, 10, 11] class of stochastic optimizers.
The method uses importance sampling to exploit the fact that EDAs probabilistically generate their
samples in order to do hyperparameter optimization without generating new samples.

Such optimizers typically control how qθ(x) is generated from the dataset at each stage of the
algorithm using hyperparameters that manage the exploration / exploitation tradeoff. Typically the
hyperparameters remain fixed throughout the optimization process or are updated according to some
pre-fixed schedule. In this work we explore the alternative of using machine learning (ML) techniques
to regularly update the hyperparameters based on the then-current dataset. Specifically, we use
cross-validation combined with multiple importance sampling [12] to resample the then-current data
set to estimate how best to set the hyperparameters at each iteration.

We use numerical experiments to show that this use of cross-validation improves the performance of
the Cross-Entropy (CE) method [1, 4, 10]. Interestingly, we find that there is a major improvement
if we allow the cross-validation to occasionally choose a value of the hyperparameter which, used
throughout the run, would result in horrible performance. We also consider a modification of the
original CE algorithm where qθ(x) is updated based on the entire current dataset (rather than just
the most recent samples as in the original algorithm). This modification is based on replacing the
simple-sampling Monte Carlo estimates in the original CE method with multiple importance sampling
estimates [12].

The work was presented at the NIPS workshop on Optimizing the Optimizers. Barcelona, Spain, 2016.



2 The multiple importance sampling extension of the cross-entropy method
Let X be random realizations generated from qθ, and define λ∗ = minx∈X G(x). In the CE
method, rather than directly search for a minimizer of G(x), we search for the θ that maximizes
l(λ) = Pqθ (G(X) ≤ λ) = Eqθ [I{G(X)≤λ}]. By gradually shrinking λ to λ∗, the θ’s that maximize
l(λ) should concentrate more and more tightly about the minimizer of G(.). The challenge is that if
we start with λ very close to λ∗ then potentially {G(X) ≤ λ} is a very rare event and estimating l
becomes a non-trivial problem.

To address this challenge, the CE method starts with θ set to some θ0. Then at each iteration t ≥ 0, a
set of samples is drawn from qθt−1 , and λt is set to the worst value of the best κ percentile of these
samples. (We call that subset of net samples the “elite samples”, {xet}.) θt is then set in order to
minimize the KL divergence from qθt to the normalized indicator distribution given by

pλt ∝ Θλt :=

{
1, G(x) ≤ λt;
0, otherwise.

(1)

i.e., to find

θ∗t = argmin
θ

KL(pλt ||qθ) = argmin
θ

Epλt

[
ln

(
pλt(x)

qθ(x)

)]
= argmax

θ

∫
x∈X

pλt(x) ln(qθ(x))dx.

(2)
We estimate θ∗t by finding the θt that this way minimizes the importance sampling estimate of the
integral in Eq. 2. (Note that we only need to consider the elite samples to do this since pλt is zero for
the other samples.) Since the normalization constant is not relevant to the solution of the optimization
problem, we can use Θλt — whose value is 1 for the elite samples — in place of pλt in the Monte
Carlo estimation.

In the original CE method only the best κ percentile of the most recently generated samples are used
to estimate θ∗(t), and those samples are all given a weight of 1/Net . Here we instead take the best
κ percentile of all the samples generated so far, and use multiple importance sampling to combine
them [12]. This is an unbiased estimator [12], just like conventional importance sampling, which
often has far smaller variance. To construct the associated estimate for θ∗t , first define

q̄t(x) =

kt∑
j=1

n
(j)
t

Net
q(j)
et (x), (3)

where each “elite sampling distribution” q(j)
et was used to generate the n(j)

t elite samples in iteration
t, such that

∑kt
j=1 n

(j)
t = Net . (Intuitively, q̄t(x) represents a weighted combination of all the elite

sampling distributions, where the weight is equal to the percentage of elite samples generated from
each elite sampling distribution.) Our full estimate for θ∗t is defined in terms of q(j)

et :

θ̂∗t = argmax
θ

Net∑
j=1

Θλt(x
(j)
et )

q̄t(x
(j)
et )

ln(qθ(x
(j)
et )) = argmax

θ

Net∑
j=1

1

q̄t(x
(j)
et )

ln(qθ(x
(j)
et )), (4)

We also tried the naive approach of using only the particular sampling distribution from which the
elite sample was generated (i.e., assigning a weight of 1 to the particular sampling distribution from
which the elite sample was generated and 0 to the rest) but it yielded poor convergence results.

The solution of the optimization problem given by Equation 4 can be obtained in closed form if q
belongs to a natural exponential family. In this work we assume q to be a Gaussian distribution.
Then the convex optimization for hyperparameters θ, in this case the mean µ and standard deviation
σ of the uncorrelated Gaussian distributions of the elite samples, can be solved by differentiating
Equation 4 with respect to each parameter and setting them to zero to give

µit =

∑Net
j=1

x(j,i)
et

q̄t(x
(j)
et )∑Net

j=1
1

q̄t(x
(j)
et )

and (σit)
2 =

∑Net
j=1

(x(j,i)
et
−µit)

2

q̄t(x
(j)
et )∑Net

j=1
1

q̄t(x
(j)
et )

, (5)

where i = 1, . . . , d and x(j,i) refers to the ith dimension of jth sample.

Using this multiple importance sampling extension of the CE method improves performance over
the original CE method for certain settings of the hyperparameter. But more importantly for current
purposes, by reducing the variance, it “stabilizes” our use of cross-validation to estimate the optimal
κ (described below), which proved crucial to having the cross-validation result in good performance.

2



3 Cross-validation for cross-entropy method

κt is the hyperparameter that specifies how to map the t− 1 dataset to θt. In the original CE method,
κ is pre-fixed to a single value that is used throughout the optimization run. If that κ is too large, it
will slow down the convergence to an optimum, and if it is too small then the algorithm will either
suffer premature convergence to a local optimum or not converge at all.

In ML, hyperparameters of an algorithm A are often optimized through cross-validation. This starts
by many times forming a partition of the available data into a “held-in” dataset and a “held-out”
dataset. For each such partition, A is trained on the held-in dataset to set parameters θ̂∗, which are
then used to evaluate performance on the held-out dataset. That performance is then averaged over all
partitions to get an overall estimate for the performance of A. Different values of the hyperparameter
in A will result in different values for this average (estimated) held-out performance. Accordingly, we
can set the hyperparameter to whatever value optimizes the associated average held-out performance,
and then use that value to train A on the entire dataset.

Cross-validation can also be used with any stochastic optimizer that has a hyperparameter to estimate
the best value of that hyperparameter, due to a formal identity equating stochastic optimization and
supervised machine learning [13]. Here we exploit this and use cross-validation to pick the best
κt for iteration t in the CE method. In order to measure performance on the held-out datasets, we
use Eqθ [G(x)]. Concretely, we use several values of κt in the CE method with held-in datasets
to produce associated estimates for the optimal θ, θ̂∗train, and then evaluate performance on the
associated held-out dataset, as given by

ntest∑
j=1

qθ̂∗train
(x

(j)
test)

q̄t(x
(j)
test)

G(x
(j)
test), (6)

where ntest is the number of test points. In this work we used k-fold cross-validation, where data is
divided equally into k partitions, and k − 1 of these are used for training and the remaining one for
testing. Crucially, since the CE method is an estimation of distribution algorithm, multiple importance
sampling can be used to reuse the existing samples and no new samples of G are required during this
use of cross-validation. (Note that we use the combined sample distribution described in Section 2 for
the multiple importance sampling process.) The final choice for κt produced by the cross-validation
is

κ∗t = argmin
κt

k∑
i=1

ntest∑
j=1

qi
θ̂∗train

(x
(j)
testi)

q̄t(x
(j)
testi)

G(x
(j)
testi) (7)

We refer to this algorithm where the hyperparameter of the (extended) CE method is adaptively set
through cross-validation as XVCE.

4 Results

We looked at elite samples in the range of 2-15% of the entire available history at each iteration.
For the original CE method implementation we ran 4 values of κ at 2, 5, 10 and 15%. For the
XVCE implementation, the best κt for each iteration t is picked from the same four options (κt ∈
{2%, 5%, 10%, 15%}) using cross-validation. In the plots, CExx represents the original CE algorithm
with xx representing value of κ. For each of the tested algorithms, we used a single Gaussian as
the sampling distribution. The bounds on design variables are implemented by using truncated
Gaussian distributions. 5-fold cross-validation is used in all the cases. We compare the performance
of each algorithm by repeating for 100 trials with randomly picked initial parameters, θ0, to get the
performance statistics. For a given trial in each test problem, the same set of initial parameters for
the Gaussian distribution and same initial population were used across all the CE algorithms. The
metric used to analyze the performance of the algorithms is the distance of the median best solution
to the known global optimum: semilog plot with Gbest − G∗ as a median of 100 repetitions on a
log scale against the number of function evaluations. Gbest refers to the best solution obtained by
the algorithm after certain number of function evaluations and G∗ is the known true optimum of the
analytic test problem.

Figure 1a shows the performance of the XVCE algorithm when the choice of κ is made from subsets
of available values of {2%, 5%, 10%, 15%}. Even when only a subset of the possible κ values were

3



provided to the cross-validation, XVCE still performs as well or outperforms the best CE algorithm
for any single one of those κ’s, as shown in Figure 1b. Indeed, median performance of the XVCE
algorithm is ∼ 7 orders of magnitude better than any of the CE algorithms run with a fixed κ. In
addition, as seen in Figure 1a, providing all four options for κ to the cross-validation algorithm results
in better performance than when the choice was restricted to a subset of those four values. This is
true even when one of the particularly poorly performing values of κ is removed from the set of
possible values. Figure 1c illustrates how XVCE changes κ as the optimization progresses to match
the changing need to trade off exploration and exploitation.

Number of function evaluations
0 500 1000 1500 2000 2500 3000

M
ed

ia
n 

(G
b

e
s

t -
 G

*)

10 -8

10 -6

10 -4

10 -2

10 0

52{2,5,10,15}
52{2,5,10}
52{2,10,15}
52{2,5,15}
52{5,10,15}
52{2,5}

(a) Different sets of choices for κ in XVCE
Number of function evaluations

0 500 1000 1500 2000 2500 3000

M
ed

ia
n 

(G
b

e
st

 -
 G

*)

10-8

10-6

10-4

10-2

100

XVCE
CE02
CE05
CE10
CE15

(b) Comparison of XVCE to CE

Iterations
0 5 10 15 20 25

M
ea

n 
5

2

4

6

8

10

12

14
XVCE
CE02
CE05
CE10
CE15

(c) Dynamically changing κ

Figure 1: Algorithm performance comparison for Hartmann 6 function.

5 Discussion

We demonstrate how to use ML techniques to dynamically update hyperparameters of a stochastic
optimization algorithm dynamically as the optimization progresses. Specifically, we show how to
use cross-validation to update the exploration / exploitation parameter of the CE method, instead of
setting it with a fixed ad hoc heuristic. In addition to the conventional single Gaussian version of the
CE method investigated here, Gaussian mixture models could also be used, in which case the number
of mixture components becomes another hyperparameter that could be dynamically updated using
cross-validation. (The parameters of a mixture distribution in the CE method are typically set via
EM.) Further improvements should also be possible by exploiting other ML techniques like bagging
and regularization. In general, the techniques outlined in this work are applicable to any estimation
of distribution algorithms for global optimization and this the focus of ongoing research. Preliminary
experiments on applying cross-validation to Univariate Marginal Distribution Algorithm (UMDA) [5]
confirm its effectiveness.

Acknowledgement

This work was supported in part by the AFOSR MURI on managing multiple information sources of
multi-physics systems, Program Manager Jean-Luc Cambier, Award Number FA9550-15-1-0038.
DHW also acknowledges the support of the Santa Fe Institute.

4



References
[1] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the cross-entropy method.

Annals of operations research, 134(1):19–67, 2005.

[2] J. S. De Bonet, C. L. Isbell, P. Viola, et al. Mimic: Finding optima by estimating probability densities.
Advances in neural information processing systems, pages 424–430, 1997.

[3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[4] D. P. Kroese, S. Porotsky, and R. Y. Rubinstein. The cross-entropy method for continuous multi-extremal
optimization. Methodology and Computing in Applied Probability, 8(3):383–407, 2006.

[5] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Optimization in continuous domains by
learning and simulation of gaussian networks. In Conference on Genetic and Evolutionary Computation
(GECCO’00) Workshop Program. Morgan Kaufmann, 2000.

[6] J. A. Lozano. Towards a new evolutionary computation: advances on estimation of distribution algorithms,
volume 192. Springer Science & Business Media, 2006.

[7] M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[8] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimization by building and using probabilistic
models. Computational optimization and applications, 21(1):5–20, 2002.

[9] M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algorithm. In Advances in Soft
Computing, pages 521–535. Springer, 1999.

[10] R. Y. Rubinstein and D. P. Kroese. The cross-entropy method: a unified approach to combinatorial
optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013.

[11] M. Sebag and A. Ducoulombier. Extending population-based incremental learning to continuous search
spaces. In International Conference on Parallel Problem Solving from Nature, pages 418–427. Springer,
1998.

[12] E. Veach and L. J. Guibas. Optimally combining sampling techniques for monte carlo rendering. In
Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages
419–428. ACM, 1995.

[13] D. Wolpert and D. Rajnarayan. Using machine learning to improve stochastic optimization. In Workshops
at the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[14] D. H. Wolpert, C. E. Strauss, and D. Rajnarayan. Advances in distributed optimization using probability
collectives. Advances in Complex Systems, 9(4):383–436, 2006.

5


	Introduction
	The multiple importance sampling extension of the cross-entropy method
	Cross-validation for cross-entropy method
	Results
	Discussion

