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Abstract

Policy gradient methods have been widely applied in reinforcement learning. For
reasons of safety and cost, learning is often conducted using a simulator. However,
learning in simulation does not traditionally utilise the opportunity to improve learn-
ing by adjusting certain environment variables – state features that are randomly
determined by the environment in a physical setting but controllable in a simulator.
Exploiting environment variables is crucial in domains containing significant rare
events (SREs), e.g., unusual wind conditions that can crash a helicopter, which
are rarely observed under random sampling but have a considerable impact on
expected return. We propose off environment reinforcement learning (OFFER),
which addresses such cases by simultaneously optimising the policy and a proposal
distribution over environment variables. We prove that OFFER converges to a
locally optimal policy and show experimentally that it learns better and faster than
a policy gradient baseline.

1 Introduction

When applying reinforcement learning (RL) to physical systems, a major issue is the cost and risk of
running trials, e.g., when learning a control policy for a robot. Hence, learning is often performed
using a simulator, to which off-line RL (i.e., sample-based planning) can be applied. Although this is
cheaper and safer than physical trials, the computational cost of each trial can still be considerable. It
is therefore important to develop algorithms that minimise this cost. Policy gradient methods [25]
are popular in such settings as they cope well with continuous action spaces, which often occur in
physical systems such as robots.

However, existing policy gradient methods do not exploit an important opportunity presented by
simulators: the chance to adjust certain environment variables, i.e., state features that cannot be
controlled in a physical setting but are (stochastically) determined by the environment. For example,
if we learn to fly a helicopter under varying wind conditions [15], we cannot control the wind in
physical trials but can easily do so in simulation.

A conventional application of policy gradient methods to such settings is not robust to significant
rare events (SREs), i.e., it fails any time there are rare events that substantially affect expected
performance. For example, some rare wind conditions may increase the risk of crashing the helicopter.
Since crashes are so catastrophic, avoiding them is key to maximising expected performance, even
though the wind conditions contributing to the crash occur only rarely. In such cases, the conventional
approach does not see such rare events often enough to learn an appropriate response.

In this paper, we propose a new policy gradient method called off-environment reinforcement learning
(OFFER) that aims to address this deficiency. The main idea is to couple the primary optimisation
of the policy with the secondary optimisation of a proposal distribution governing the environment
variables. Since environment variables can be controlled in simulation, we are free to sample from
the proposal distribution when generating data for the primary optimisation. Thanks to importance
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sampling, the primary optimisation can retain unbiased gradient estimates. Just as off-policy RL
learns about a target policy while using a behaviour policy, off-environment RL learns about a
target environment (the true distribution over environment variables) while generating data from
another environment (the proposal distribution). By learning a proposal distribution that minimises
the variance in the gradient estimate used during primary optimisation, OFFER can automatically
discover and focus on the SREs that any robust policy must address.

We show that OFFER is guaranteed to converge to a locally optimal policy. In addition, we present
empirical results on several tasks showing that it greatly outperforms existing policy gradient methods
in the presence of significant rare events.

Our approach is related to existing work on adaptive importance sampling [1, 8, 7], which also seeks
to optimise proposal distributions. but mostly focus on Markov reward processes, not MDPs. It
has been attempted [8] to consider a full MDP and aim to learn using a proposal distribution that
takes rare events into account; however, the authors assume prior knowledge of what the significant
rare events are as well as access to a simulator with environment variables that directly control the
probability of such rare events. By contrast, our work seeks to automatically discover significant rare
events and the proposal distributions that generate them. One can also [19] consider a similar setting
to ours but in the context of Bayesian optimisation, in which case environment variables must be
marginalised out using Bayesian quadrature. Here, we consider a policy gradient approach, which is
typically more effective in high-dimensional tasks.

2 Problem Setting

We model the decision-making task as a Markov decision process (MDP), in which taking an action
at ∈ A in state st ∈ S at time t generates a reward whose expected value is r(st, at) and a transition
to a next state st+1 ∼ p(st+1|st, at). We assume access to an MDP simulator in the form of a
trajectory model that generates sequences of samples, obtained from the distribution over initial states
p1(s1) and each action at is sampled from a stochastic policy πθ(at|φ(st)) parameterised by a vector
θ; φ(st) is a function mapping st to a vector of real-valued features. In the sequel, we write πθ(at|st)
for brevity. We assume πθ is a twice differentiable function of θ.

In addition, we assume access to a vector of environment variables ψ (e.g., coefficients of friction,
wind velocities) that affect state transition probabilities. Note that, while we can control ψ when
running the simulator, the policy we ultimately deploy cannot.

In this paper, we model environment variables by supposing that states in the simulator
are sampled, not from p1(s1) and p(st+1|st, at), but from proposal distributions fψ1 (s1) and
fψ(st+1|s1, at), which are parameterised by ψ. The goal in this setting is find a θ that
maximises the total expected return Jθ =

∫
S
ρπ(s)

∫
A
πθ(a|s)r(s, a)dads where the im-

proper distribution ρπ(s′) =
∫
S

∑∞
n=1 γ

n−1p1(s)p(s → s′, n, π)ds and p(s → s′, n, π) =∑
τ∈Traj(n,s,s′)

∏n
t=1

∫
p(st+1|st, at)π(at|st)dat, where Traj(n, s, s′) is the set of all possible trajec-

tories of length n beginning with s and ending with s′. In the next section, we propose an algorithm
that learns both θ and ψ in parallel.

3 Off-Environment Reinforcement Learning

We propose off-environment reinforcement learning, or OFFER (Algorithm 1) for coping with
significant rare events by exploiting environment variables. OFFER interleaves two optimisation
steps. The primary optimisation step performs an importance-weighted policy gradient update,
adjusting θ to improve the policy’s expected return. The secondary optimisation performs a gradient
descent step on the proposal distribution, adjusting ψ to reduce the variance of the gradient estimate
used during primary optimisation.
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Algorithm 1 OFFER()

1: while not converged do
2: τ ← sample trajectory using πθ and fΨ

3: . τ = (s1, a1, r1, s2, a2, r2, . . . , sN , aN , rN )
4: ∆θ ← PRIMARY-OPTIMISATION(τ , θ, ψ)
5: θ ← θ + ∆θ
6: ∆ψ ← SECONDARY-OPTIMISATION(τ , ψ)
7: ψ ← ψ + ∆ψ
8: end while

3.1 Primary Optimisation

The primary optimisation performs a policy gradient update that adjusts θ to improve expected return.
To estimate the gradient, we apply importance sampling to the policy gradient update [12]:

∇θJθ = Eτ∼fπ(τ)

[
pπ(τ)

fπ(τ)

N∑
t=1

γt∇θ log πθ(at|st)Qπ(st, at)

]
, where

{
fπ(τ) = f1(s1)

∏N
t=1 f(st+1|st, at)π(at|st),

p(τ) = p1(s1)
∏N
t=1 p(st+1|st, at)π(at|st).

We now consider how to update θ. Since the magnitude of the update in stochastic gradient descent
depends on the magnitude of û and hence on the magnitude of the rewards, the optimal learning
rate depends on the scale of the rewards. Furthermore, in the presence of SREs we have to deal
with different reward scales (this is what makes the rare event significant). Hence, the ability to
adaptively set the learning rate separately for each policy feature becomes an essential, not merely
desirable, characteristic of the learning algorithm. To meet this requirement, we employ a stochastic
variant of Newton’s method [9, 23] because it has already been shown to work well with policy
gradient methods [9]. Furthermore, we maintain a mean of the Hessians estimated over time. To
avoid the prohibitive cost of inverting the full Hessian, only its diagonal is used, which corresponds
to performing Newton’s method on each coordinate separately. Algorithm 2 summarises the resulting
primary optimisation algorithm, where CRITIC-REINFORCE and CRITIC-AC correspond to the critic
part for actor-critic methods for computing a baseline-adjusted approximation to the Q value [20].

Algorithm 2 PRIMARY-OPTIMISATION(τ , θ,ψ)

1: . Traj. τ = (s1, a1, r1, s2, a2, r2, . . . , sN , aN , rN )
2: . Critic
3: û← CRITIC-REINFORCE(τ ) or CRITIC-AC(τ ) . Baseline-adjusted estimate of Q function
4:
5: . Actor
6: w ← p1(s1)

f1(s1)

∏N
t=1

p(st+1|st,at)
f(st+1|st,at) . Importance sampling

7: ∇̂θJθ ← w
∑N
i=1 γ

i∇θ log πθ(ai|si)ûi
8: Ĥ ← w

∑N
i=1 γ

idiag(∇θ∇>θ log πθ(ai|si))ûi
9: ĤM ← i−1

i ĤM + 1
i Ĥ

10:
11: return αiĤ−1

M ∇̂θJθ

3.2 Secondary Optimisation

The goal of secondary optimisation is to find a proposal distribution that best facilitates primary
optimisation. To this end, we propose to minimise the variance of the gradient estimate followed
during primary optimisation. Such variance is known to be a key contributor to slow learning in
policy gradient methods [20, 26, 12, 17]. By minimising this variance, we expect OFFER to discover
proposal distributions that generate significant rare events more often than in the original task. Since
such events contribute substantially to expected return, doing so makes it easier to estimate the
gradient of the expected return.

We start by defining the covariance C = Covτ∼fψ
[

1
fψ(τ)

h(τ)
]
, where h(τ) =

p(τ)
∑N
t=1 γ

t∇θ log πθ(at|st)ut. Since we are interested in minimising our uncertainty about each
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Algorithm 3 SECONDARY-OPTIMISATION(τ , ψ)

1: . Traj. τ = (s1, a1, r1, s2, a2, r2, . . . , sN , aN , rN )
2: . ADAM algorithm
3: ∇̂ψj trace(C)← 1

m

∑
τ∈S

∑
i−

1
fψ(τ)3

(
∇ψjf(τ)

)
hi(τ)

2

4: m← β1m+ (1− β1)∇̂ψj trace(C)
5: . � is an element-wise product
6: v ← β2v + (1− β2)∇̂ψj trace(C)� ∇̂ψj trace(C)

7: m̂← m/(1− βi1)
8: v̂ ← v/(1− βi2)
9:

10: . Division and square root are element-wise
11: return α′m̂/

√
v̂ + ε
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Figure 1: Average per-episode penalty (lower is better) for OFFER (blue) and a policy gradient
baseline (black) in three variants of mountain car, as well as a robotic arm task.

of the partial derivatives that make up the gradient, rather than the correlations between them, we
consider only the diagonal of C. Furthermore, since we have no a priori reason to think one partial
derivative is more important than another, we define the trace of C as our objective, i.e., we solve the
optimisation minψ trace(C). If we treat ĤM as a constant (which is approximately true for large
N ), then minimising the covariance of ∇̂θJθ also minimises the covariance of ∆θ. To solve the
minimisation by gradient descent, we must evaluate the gradient of the trace with respect to φ. It can
be shown that ∇ψj trace(C) = Eτ∼fψ

[
−
∑
i

1
fψ(τ)3

(
∇ψjf(τ)

)
hi(τ)2

]
, which can be estimated

from a trajectory τ as follows:

∇̂ψj trace(C) =
∑
i

− 1

fψ(τ)3

(
∇ψjf(τ)

)
ĥi(τ)2, where ĥi(τ) = p(τ)

N∑
t=1

γt∇θ log πθ(at|st)ût.

The secondary optimisation can be performed using any variant of stochastic gradient descent (we
use ADAM [14]). Algorithm 3 summarises the secondary optimisation.

The following corollary establishes a convergence guarantee for OFFER.

Corollary 1. Under mild technical conditions, OFFER (Algorithm 1) converges almost surely to the
local minimum θ?. Moreover, ψ converges to a local minimum. The proof, which we omit due to lack
of space, extends a result established by [23].

4 Experiments

We empirically compare OFFER to a policy gradient baseline (primary optimisation only) on variants
of the mountain car task, as well as a simulated robot arm. Both domains have penalties rather than
rewards, so lower is better on all plots. All results are averaged over 48 runs. Blue curves represent
our algorithm and black curves represent vanilla policy gradients. The lines at the top and bottom of
the upper two plots show the performance of the same learning runs split out into just rare events and
just normal events, respectively, i.e., the middle lines are weighted averages of the top and bottom
lines. In every case, OFFER substantially outperforms vanilla policy gradients.
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